Vai al contenuto

Verbi

I verbi sono i sub comandi di Miller. Queste le categorie:

File di esempio

File per sviluppare esempi

Per la gran parte degli esempi sviluppati in questa pagina, verrà usato il file base_category.csv (vedi sotto).
È stato scelto un file piccolo e semplice, per ragioni didattiche e di leggibilità.

nome dataNascita altezza peso comuneNascita
andy 1973-05-08 176 86.5 Roma
chiara 1993-12-13 162 58.3 Milano
guido 2001-01-22 196 90.4 Roma
sara 2000-02-22 166 70.4 Roma
giulia 1997-08-13 169 68.3 Milano
base_category.csv
nome,dataNascita,altezza,peso,comuneNascita
andy,1973-05-08,176,86.5,Roma
chiara,1993-12-13,162,58.3,Milano
guido,2001-01-22,196,90.4,Roma
sara,2000-02-22,166,70.4,Roma
giulia,1997-08-13,169,68.3,Milano

Guida in linea per un verbo

Per aprire la guida in linea di un verbo, basta lanciare mlr nomeVerbo --help. Ad esempio per il verbo cat, il comando mlr cat --help restituirà:

Usage: mlr cat [options]
Passes input records directly to output. Most useful for format conversion.
Options:
-n        Prepend field "n" to each record with record-counter starting at 1
-g {comma-separated field name(s)} When used with -n/-N, writes record-counters
          keyed by specified field name(s).
-v        Write a low-level record-structure dump to stderr.
-N {name} Prepend field {name} to each record with record-counter starting at 1

A seguire, per ogni verbo, sarà inserito l'help ufficiale di ogni comando.

Lista dei verbi

altkv

Mappa una lista di valori, come coppie alternate chiave/valore.

mlr altkv --help

Usage: mlr altkv [options]
Given fields with values of the form a,b,c,d,e,f emits a=b,c=d,e=f pairs.

Ad esempio

echo "a,b,c,d" | mlr --ocsv altkv

{"a":"b","c":"d"}

bar

Per creare dei grafici a barre (bruttini 🙃), rimpiazzando dei valori numeri con una serie di asterichi. Per allinearli meglio si possono usare le opzioni di output --opprint o --oxtab.

mlr bar --help

Replaces a numeric field with a number of asterisks, allowing for cheesy
bar plots. These align best with --opprint or --oxtab output format.
Options:
-f   {a,b,c}      Field names to convert to bars.
--lo {lo}         Lower-limit value for min-width bar: default '0.000000'.
--hi {hi}         Upper-limit value for max-width bar: default '100.000000'.
-w   {n}          Bar-field width: default '40'.
--auto            Automatically computes limits, ignoring --lo and --hi.
                Holds all records in memory before producing any output.
-c   {character}  Fill character: default '*'.
-x   {character}  Out-of-bounds character: default '#'.
-b   {character}  Blank character: default '.'.
Nominally the fill, out-of-bounds, and blank characters will be strings of length 1.
However you can make them all longer if you so desire.

A partire ad esempio da questo file di input:

bar.csv
Area,percUtenti
Nord,25
Centro,32
Sud e isole,43

mlr --c2p bar -f percUtenti ./bar.csv

Area        percUtenti
Nord        **********..............................
Centro      ************............................
Sud e isole *****************.......................

bootstrap

L'uso tipico di bootstrap è quello di estrarre un campione random dall'input, con un numero di record pari al numero record di input; con doppioni possibili.

mlr bootstrap --help

Emits an n-sample, with replacement, of the input records.
See also mlr sample and mlr shuffle.
Options:
 -n Number of samples to output. Defaults to number of input records.
    Must be non-negative.

Sotto un esempio in cui a partire dal file di input, composto da 5 record distinti, sono estratti in modo randomico 5 record.

mlr --csv bootstrap base_category.csv

nome,dataNascita,altezza,peso,comuneNascita
guido,2001-01-22,196,90.4,Roma
chiara,1993-12-13,162,58.3,Milano
chiara,1993-12-13,162,58.3,Milano
guido,2001-01-22,196,90.4,Roma
chiara,1993-12-13,162,58.3,Milano

cat

Utile sopratutto per conversione di formato (vedi formati) e per concatenare in "verticale" file con lo stesso schema (🍳 ricetta).

mlr cat --help

Usage: mlr cat [options]
Passes input records directly to output. Most useful for format conversion.
Options:
-n        Prepend field "n" to each record with record-counter starting at 1
-g {comma-separated field name(s)} When used with -n/-N, writes record-counters
          keyed by specified field name(s).
-v        Write a low-level record-structure dump to stderr.
-N {name} Prepend field {name} to each record with record-counter starting at 1

Il comando di base stampa a schermo il contenuto di un file:

mlr --csv cat base_category.csv

nome,dataNascita,altezza,peso,comuneNascita
andy,1973-05-08,176,86.5,Roma
chiara,1993-12-13,162,58.3,Milano
guido,2001-01-22,196,90.4,Roma
sara,2000-02-22,166,70.4,Roma
giulia,1997-08-13,169,68.3,Milano

Con l'opzione -n si aggiunge un campo con un progressivo numerico intero che parte da 1:

mlr --csv -n cat base.csv

n,nome,dataNascita,altezza,peso,comuneNascita
1,andy,1973-05-08,176,86.5,Roma
2,chiara,1993-12-13,162,58.3,Milano
3,guido,2001-01-22,196,90.4,Roma
4,sara,2000-02-22,166,70.4,Roma
5,giulia,1997-08-13,169,68.3,Milano

Se all'opzione -n si aggiunge -g seguito da dal nome di uno o più campi, il "contatore" sarà applicato per gruppo e partirà da 1 distintamente per ogni gruppo. Qui sotto ad esempio il raggruppamento è fatto per comuneNascita:

mlr --csv cat -n -g comuneNascita base_category.csv

n,nome,dataNascita,altezza,peso,comuneNascita
1,andy,1973-05-08,176,86.5,Roma
1,chiara,1993-12-13,162,58.3,Milano
2,guido,2001-01-22,196,90.4,Roma
3,sara,2000-02-22,166,70.4,Roma
2,giulia,1997-08-13,169,68.3,Milano

check

È un verbo che non produce un output, salvo un report sulla correttezza di "formattazione" del file di input.

mlr check --help

Consumes records without printing any output.
Useful for doing a well-formatted check on input data.
Options:

Se ad esempio si ha un file CSV, con un numero di campi nell'intestazione (4) diverso da quello del corpo (5), come questo

check.csv
nome,dataNascita,altezza,comuneNascita
andy,1973-05-08,176,86.5,Roma
chiara,1993-12-13,162,58.3,Milano
guido,2001-01-22,196,90.4,Roma

si avrà l'output sottostante

mlr --csv check check.csv

mlr :  mlr: CSV header/data length mismatch 4 != 5 at filename ./check.csv row 2.

clean-whitespace

È un prezioso comando, per "pulire" i dati: rimuove gli spazi ridondanti.

mlr clean-whitespace --help

For each record, for each field in the record, whitespace-cleans the keys and/or
values. Whitespace-cleaning entails stripping leading and trailing whitespace,
and replacing multiple whitespace with singles. For finer-grained control,
please see the DSL functions lstrip, rstrip, strip, collapse_whitespace,
and clean_whitespace.

Options:
-k|--keys-only    Do not touch values.
-v|--values-only  Do not touch keys.
It is an error to specify -k as well as -v -- to clean keys and values,
leave off -k as well as -v.

Riuove in particolare uno o più spazi bianchi a inizio e fine cella e due o più spazi all'interndo della cella. Ad esempio nel file sottostante ci sono due spazi tra Busto e Arsizio, uno spazio a fine cella dopo andy e uno a inizio cella i corrispondenza di chiara. Questi sono ridondanti, e nella grandissima parte dei casi sono da rimuovere.

clean-whitespace.json
{"nome":"andy ","dataNascita":"1973-05-08","comuneNascita":"Roma"}
{"nome":" chiara","dataNascita":"1993-12-13","comuneNascita":"Busto  Arsizio"}

Per pulire il file:

mlr --json clean-whitespace input.json

{"nome":"andy","dataNascita":"1973-05-08","comuneNascita":"Roma"}
{"nome":"chiara","dataNascita":"1993-12-13","comuneNascita":"Busto Arsizio"}

Due comode opzioni:

  • -k fa la pulizia soltanto nei nomi dei campi, nelle chiavi;
  • -v fa la pulizia soltanto nei valori.

count

Restituisce il numero di record. Miller tiene conto del formato, quindi per un CSV composto da 6 righe, 1 di intestazione più 5 di dati, restituirà 5.

mlr count --help

Prints number of records, optionally grouped by distinct values for specified field names.
Options:
-g {a,b,c} Optional group-by-field names for counts, e.g. a,b,c
-n {n} Show only the number of distinct values. Not interesting without -g.
-o {name} Field name for output-count. Default "count".

File di esempio:

base_category.csv
nome,dataNascita,altezza,peso,comuneNascita
andy,1973-05-08,176,86.5,Roma
chiara,1993-12-13,162,58.3,Milano
guido,2001-01-22,196,90.4,Roma
sara,2000-02-22,166,70.4,Roma
giulia,1997-08-13,169,68.3,Milano

Comando di esempio:

mlr --csv count ./base_category.csv

count
5

Se si desidera soltanto l'output numerico, senza riga di intestazione, si può fare in tantissimi modi. Uno è quello di cambiare il formato di output in NIDX:

mlr --c2n count ./base_category.csv

5

count-distinct

Restituisce il numero di record che hanno valori distinti, per uno o più campi specificati.

mlr count-distinct --help

Prints number of records having distinct values for specified field names.
Same as uniq -c.

Options:
-f {a,b,c}    Field names for distinct count.
-n            Show only the number of distinct values. Not compatible with -u.
-o {name}     Field name for output count. Default "count".
              Ignored with -u.
-u            Do unlashed counts for multiple field names. With -f a,b and
              without -u, computes counts for distinct combinations of a
              and b field values. With -f a,b and with -u, computes counts
              for distinct a field values and counts for distinct b field
              values separately.

File di esempio:

count-distinct.csv
nome,dataNascita,altezza,peso,comuneNascita,sesso
andy,1973-05-08,176,86.5,Roma,maschio
chiara,1993-12-13,162,58.3,Milano,femmina
guido,2001-01-22,196,90.4,Roma,maschio
sara,2000-02-22,166,70.4,Roma,femmina
giulia,1997-08-13,169,68.3,Milano,femmina

Ad esempio il conteggio per combinazioni distinte di comune di nascita e sesso:

mlr --csv count-distinct -f comuneNascita,sesso -o conteggio ./base_category.csv

comuneNascita,sesso,conteggio
Roma,maschio,2
Milano,femmina,2
Roma,femmina,1

Aggiungendo il parametro -u, si ottengono i valori distinti non per combinazioni distinti dei campi indicati, ma per ogni singolo campo.

mlr --csv count-distinct -f comuneNascita,sesso -o conteggio -u ./base_category.csv

field,value,count
comuneNascita,Roma,3
comuneNascita,Milano,2
sesso,maschio,2
sesso,femmina,3

count-similar

Aggiunge un campo, con il conteggio dei record che ha lo stesso valore per uno o più campi.

mlr count-similar --help

Ingests all records, then emits each record augmented by a count of
the number of other records having the same group-by field values.
Options:
-g {a,b,c} Group-by-field names for counts, e.g. a,b,c
-o {name} Field name for output-counts. Defaults to "count".

File di esempio:

base_category.csv
nome,dataNascita,altezza,peso,comuneNascita
andy,1973-05-08,176,86.5,Roma
chiara,1993-12-13,162,58.3,Milano
guido,2001-01-22,196,90.4,Roma
sara,2000-02-22,166,70.4,Roma
giulia,1997-08-13,169,68.3,Milano

A seguire ad esempio viene aggiunto il campo conteggio al file di input, con il conteggio dei valori distinti per il campo comuneNascita.

mlr --csv count-similar -g comuneNascita -o conteggio ./base_category.csv

nome,dataNascita,altezza,peso,comuneNascita,conteggio
andy,1973-05-08,176,86.5,Roma,3
guido,2001-01-22,196,90.4,Roma,3
sara,2000-02-22,166,70.4,Roma,3
chiara,1993-12-13,162,58.3,Milano,2
giulia,1997-08-13,169,68.3,Milano,2

cut

Estrae/rimuove dall'input uno o più campi.

mlr cut --help

Passes through input records with specified fields included/excluded.
Options:
 -f {a,b,c} Comma-separated field names for cut, e.g. a,b,c.
 -o Retain fields in the order specified here in the argument list.
    Default is to retain them in the order found in the input data.
 -x|--complement  Exclude, rather than include, field names specified by -f.
 -r Treat field names as regular expressions. "ab", "a.*b" will
   match any field name containing the substring "ab" or matching
   "a.*b", respectively; anchors of the form "^ab$", "^a.*b$" may
   be used. The -o flag is ignored when -r is present.
Examples:
  mlr cut -f hostname,status
  mlr cut -x -f hostname,status
  mlr cut -r -f '^status$,sda[0-9]'
  mlr cut -r -f '^status$,"sda[0-9]"'
  mlr cut -r -f '^status$,"sda[0-9]"i' (this is case-insensitive)

File di esempio:

base_category.csv
nome,dataNascita,altezza,peso,comuneNascita
andy,1973-05-08,176,86.5,Roma
chiara,1993-12-13,162,58.3,Milano
guido,2001-01-22,196,90.4,Roma
sara,2000-02-22,166,70.4,Roma
giulia,1997-08-13,169,68.3,Milano

Per estrarre soltanto il campo nome:

mlr --csv cut -f nome base_category.csv

nome
andy
chiara
guido
sara
giulia

Per rimuovere il campo nome, bisognerà aggiungere l'opzione -x:

mlr --csv cut -x -f nome base_category.csv

dataNascita,altezza,peso,comuneNascita
1973-05-08,176,86.5,Roma
1993-12-13,162,58.3,Milano
2001-01-22,196,90.4,Roma
2000-02-22,166,70.4,Roma
1997-08-13,169,68.3,Milano

Per impostare il filtro tramite espressione regolare si usa l'opzione -r. Ad esempio estrarre soltanto i campi che iniziano per a e che terminano per o:

mlr --csv cut -r -f "^a","o$" base_category.csv

altezza,peso
176,86.5
162,58.3
196,90.4
166,70.4
169,68.3

decimate

Estrae un record ogni n, opzionalmente per categoria.

mlr decimate --help

Passes through one of every n records, optionally by category.
Options:
 -b Decimate by printing first of every n.
 -e Decimate by printing last of every n (default).
 -g {a,b,c} Optional group-by-field names for decimate counts, e.g. a,b,c.
 -n {n} Decimation factor (default 10).

fill-down

Se un dato record ha un valore mancante per un dato campo, verrà riempito dal valore corrispondente del record precedente, se presente.

mlr fill-down --help

If a given record has a missing value for a given field, fill that from
the corresponding value from a previous record, if any.
By default, a 'missing' field either is absent, or has the empty-string value.
With -a, a field is 'missing' only if it is absent.

Options:
 --all Operate on all fields in the input.
 -a|--only-if-absent If a given record has a missing value for a given field,
     fill that from the corresponding value from a previous record, if any.
     By default, a 'missing' field either is absent, or has the empty-string value.
     With -a, a field is 'missing' only if it is absent.
 -f  Field names for fill-down.

File di esempio:

fill-down.csv
a,b,c
1,,3
4,5,
7,,9

Con l'opzione -all il verbo viene applicato per tutti i record:

mlr --csv fill-down --all fill-down.csv

a,b,c
1,,3
4,5,3
7,5,9

Con -f è possibile scegliere di applicaro a 1 o più campi.

fill-empty

Il verbo fill-empty richiede Miller >= 6.0

Riempe le celle vuote, con un valore specifico

mlr fill-empty --help

Fills empty-string fields with specified fill-value.
Options:
-v {string} Fill-value: defaults to "N/A"
-S          Don't infer type -- so '-v 0' would fill string 0 not int 0.

File di esempio:

fill-down.csv
a,b,c
1,,3
4,5,
7,,9

Come impopstazione predefinita, il valore assegnato sarà N/A, ma è possibile impostarlo con -v:

mlr --csv fill-empty fill-down.csv

a,b,c
1,N/A,3
4,5,N/A
7,N/A,9

filter

mlr filter --help

Options:
-f {file name} File containing a DSL expression (see examples below). If the filename
   is a directory, all *.mlr files in that directory are loaded.

-e {expression} You can use this after -f to add an expression. Example use
   case: define functions/subroutines in a file you specify with -f, then call
   them with an expression you specify with -e.

(If you mix -e and -f then the expressions are evaluated in the order encountered.
Since the expression pieces are simply concatenated, please be sure to use intervening
semicolons to separate expressions.)

-s name=value: Predefines out-of-stream variable @name to have
    Thus mlr put -s foo=97 '$column += @foo' is like
    mlr put 'begin {@foo = 97} $column += @foo'.
    The value part is subject to type-inferencing.
    May be specified more than once, e.g. -s name1=value1 -s name2=value2.
    Note: the value may be an environment variable, e.g. -s sequence=$SEQUENCE

-x (default false) Prints records for which {expression} evaluates to false, not true,
   i.e. invert the sense of the filter expression.

-q Does not include the modified record in the output stream.
   Useful for when all desired output is in begin and/or end blocks.

-S and -F: There are no-ops in Miller 6 and above, since now type-inferencing is done
   by the record-readers before filter/put is executed. Supported as no-op pass-through
   flags for backward compatibility.


Parser-info options:

-w Print warnings about things like uninitialized variables.

-W Same as -w, but exit the process if there are any warnings.

-p Prints the expressions's AST (abstract syntax tree), which gives full
  transparency on the precedence and associativity rules of Miller's grammar,
  to stdout.

-d Like -p but uses a parenthesized-expression format for the AST.

-D Like -d but with output all on one line.

-E Echo DSL expression before printing parse-tree

-v Same as -E -p.

-X Exit after parsing but before stream-processing. Useful with -v/-d/-D, if you
   only want to look at parser information.

Records will pass the filter depending on the last bare-boolean statement in
the DSL expression. That can be the result of <, ==, >, etc., the return value of a function call
which returns boolean, etc.

Examples:
  mlr --csv --from example.csv filter '$color == "red"'
  mlr --csv --from example.csv filter '$color == "red" && flag == true'
More example filter expressions:
  First record in each file:
    'FNR == 1'
  Subsampling:
    'urand() < 0.001'
  Compound booleans:
    '$color != "blue" && $value > 4.2'
    '($x < 0.5 && $y < 0.5) || ($x > 0.5 && $y > 0.5)'
  Regexes with case-insensitive flag
    '($name =~ "^sys.*east$") || ($name =~ "^dev.[0-9]+"i)'
  Assignments, then bare-boolean filter statement:
    '$ab = $a+$b; $cd = $c+$d; $ab != $cd'
  Bare-boolean filter statement within a conditional:
    'if (NR < 100) {
      $x > 0.3;
    } else {
      $x > 0.002;
    }
    '
  Using 'any' higher-order function to see if $index is 10, 20, or 30:
    'any([10,20,30], func(e) {return $index == e})'

See also https://miller.readthedocs.io/reference-dsl for more context.

flatten

mlr flatten --help

Flattens multi-level maps to single-level ones. Example: field with name 'a'
and value '{"b": { "c": 4 }}' becomes name 'a.b.c' and value 4.
Options:
-f Comma-separated list of field names to flatten (default all).
-s Separator, defaulting to mlr --flatsep value.

format-values

mlr format-values --help

Applies format strings to all field values, depending on autodetected type.
* If a field value is detected to be integer, applies integer format.
* Else, if a field value is detected to be float, applies float format.
* Else, applies string format.

Note: this is a low-keystroke way to apply formatting to many fields. To get
finer control, please see the fmtnum function within the mlr put DSL.

Note: this verb lets you apply arbitrary format strings, which can produce
undefined behavior and/or program crashes.  See your system's "man printf".

Options:
-i {integer format} Defaults to "%d".
                    Examples: "%06lld", "%08llx".
                    Note that Miller integers are long long so you must use
                    formats which apply to long long, e.g. with ll in them.
                    Undefined behavior results otherwise.
-f {float format}   Defaults to "%f".
                    Examples: "%8.3lf", "%.6le".
                    Note that Miller floats are double-precision so you must
                    use formats which apply to double, e.g. with l[efg] in them.
                    Undefined behavior results otherwise.
-s {string format}  Defaults to "%s".
                    Examples: "_%s", "%08s".
                    Note that you must use formats which apply to string, e.g.
                    with s in them. Undefined behavior results otherwise.
-n                  Coerce field values autodetected as int to float, and then
                    apply the float format.

fraction

mlr fraction --help

For each record's value in specified fields, computes the ratio of that
value to the sum of values in that field over all input records.
E.g. with input records  x=1  x=2  x=3  and  x=4, emits output records
x=1,x_fraction=0.1  x=2,x_fraction=0.2  x=3,x_fraction=0.3  and  x=4,x_fraction=0.4

Note: this is internally a two-pass algorithm: on the first pass it retains
input records and accumulates sums; on the second pass it computes quotients
and emits output records. This means it produces no output until all input is read.

Options:
-f {a,b,c}    Field name(s) for fraction calculation
-g {d,e,f}    Optional group-by-field name(s) for fraction counts
-p            Produce percents [0..100], not fractions [0..1]. Output field names
              end with "_percent" rather than "_fraction"
-c            Produce cumulative distributions, i.e. running sums: each output
              value folds in the sum of the previous for the specified group
              E.g. with input records  x=1  x=2  x=3  and  x=4, emits output records
              x=1,x_cumulative_fraction=0.1  x=2,x_cumulative_fraction=0.3
              x=3,x_cumulative_fraction=0.6  and  x=4,x_cumulative_fraction=1.0

gap

mlr gap --help

Emits an empty record every n records, or when certain values change.
Options:
Emits an empty record every n records, or when certain values change.
-g {a,b,c} Print a gap whenever values of these fields (e.g. a,b,c) changes.
-n {n} Print a gap every n records.
One of -f or -g is required.
-n is ignored if -g is present.

grep

mlr grep --help

Passes through records which match the regular expression.
Options:
-i  Use case-insensitive search.
-v  Invert: pass through records which do not match the regex.
Note that "mlr filter" is more powerful, but requires you to know field names.
By contrast, "mlr grep" allows you to regex-match the entire record. It does
this by formatting each record in memory as DKVP, using command-line-specified
ORS/OFS/OPS, and matching the resulting line against the regex specified
here. In particular, the regex is not applied to the input stream: if you
have CSV with header line "x,y,z" and data line "1,2,3" then the regex will
be matched, not against either of these lines, but against the DKVP line
"x=1,y=2,z=3".  Furthermore, not all the options to system grep are supported,
and this command is intended to be merely a keystroke-saver. To get all the
features of system grep, you can do
  "mlr --odkvp ... | grep ... | mlr --idkvp ..."

group-by

mlr group-by --help

Outputs records in batches having identical values at specified field names.Options:

group-like

mlr group-like --help

Outputs records in batches having identical field names.
Options:

having-fields

mlr having-fields --help

Conditionally passes through records depending on each record's field names.
Options:
  --at-least      {comma-separated names}
  --which-are     {comma-separated names}
  --at-most       {comma-separated names}
  --all-matching  {regular expression}
  --any-matching  {regular expression}
  --none-matching {regular expression}
Examples:
  mlr having-fields --which-are amount,status,owner
  mlr having-fields --any-matching 'sda[0-9]'
  mlr having-fields --any-matching '"sda[0-9]"'
  mlr having-fields --any-matching '"sda[0-9]"i' (this is case-insensitive)

mlr head --help

Passes through the first n records, optionally by category.
Without -g, ceases consuming more input (i.e. is fast) when n records have been read.
Options:
-g {a,b,c} Optional group-by-field names for head counts, e.g. a,b,c.
-n {n} Head-count to print. Default 10.

histogram

mlr histogram --help

Just a histogram. Input values < lo or > hi are not counted.
-f {a,b,c}    Value-field names for histogram counts
--lo {lo}     Histogram low value
--hi {hi}     Histogram high value
--nbins {n}   Number of histogram bins. Defaults to 20.
--auto        Automatically computes limits, ignoring --lo and --hi.
              Holds all values in memory before producing any output.
-o {prefix}   Prefix for output field name. Default: no prefix.

json-parse

mlr json-parse --help

Tries to convert string field values to parsed JSON, e.g. "[1,2,3]" -> [1,2,3].
Options:
-f {...} Comma-separated list of field names to json-parse (default all).

json-stringify

mlr json-stringify --help

Produces string field values from field-value data, e.g. [1,2,3] -> "[1,2,3]".
Options:
-f {...} Comma-separated list of field names to json-parse (default all).
--jvstack Produce multi-line JSON output.
--no-jvstack Produce single-line JSON output per record (default).

join

mlr join --help

Joins records from specified left file name with records from all file names
at the end of the Miller argument list.
Functionality is essentially the same as the system "join" command, but for
record streams.
Options:
  -f {left file name}
  -j {a,b,c}   Comma-separated join-field names for output
  -l {a,b,c}   Comma-separated join-field names for left input file;
               defaults to -j values if omitted.
  -r {a,b,c}   Comma-separated join-field names for right input file(s);
               defaults to -j values if omitted.
  --lp {text}  Additional prefix for non-join output field names from
               the left file
  --rp {text}  Additional prefix for non-join output field names from
               the right file(s)
  --np         Do not emit paired records
  --ul         Emit unpaired records from the left file
  --ur         Emit unpaired records from the right file(s)
  -s|--sorted-input  Require sorted input: records must be sorted
               lexically by their join-field names, else not all records will
               be paired. The only likely use case for this is with a left
               file which is too big to fit into system memory otherwise.
  -u           Enable unsorted input. (This is the default even without -u.)
               In this case, the entire left file will be loaded into memory.
               If you wish to use a prepipe command for the main input as well
               as here, it must be specified there as well as here.
  --prepipex {command} Likewise.
File-format options default to those for the right file names on the Miller
argument list, but may be overridden for the left file as follows. Please see
  -i {one of csv,dkvp,nidx,pprint,xtab}
  --irs {record-separator character}
  --ifs {field-separator character}
  --ips {pair-separator character}
  --repifs
  --implicit-csv-header
  --no-implicit-csv-header
For example, if you have 'mlr --csv ... join -l foo ... ' then the left-file format will
be specified CSV as well unless you override with 'mlr --csv ... join --ijson -l foo' etc.
Likewise, if you have 'mlr --csv --implicit-csv-header ...' then the join-in file will be
expected to be headerless as well unless you put '--no-implicit-csv-header' after 'join'.
Please use "mlr --usage-separator-options" for information on specifying separators.
Please see https://miller.readthedocs.io/en/latest/reference-verbs.html#join for more information
including examples.

label

mlr label --help

Given n comma-separated names, renames the first n fields of each record to
have the respective name. (Fields past the nth are left with their original
names.) Particularly useful with --inidx or --implicit-csv-header, to give
useful names to otherwise integer-indexed fields.

Options:

least-frequent

mlr least-frequent --help

Shows the least frequently occurring distinct values for specified field names.
The first entry is the statistical anti-mode; the remaining are runners-up.
Options:
-f {one or more comma-separated field names}. Required flag.
-n {count}. Optional flag defaulting to 10.
-b          Suppress counts; show only field values.
-o {name}   Field name for output count. Default "count".
See also "mlr most-frequent".

merge-fields

mlr merge-fields --help

Computes univariate statistics for each input record, accumulated across
specified fields.
Options:
-a {sum,count,...}  Names of accumulators. One or more of:
  count    Count instances of fields
  mode     Find most-frequently-occurring values for fields; first-found wins tie
  antimode Find least-frequently-occurring values for fields; first-found wins tie
  sum      Compute sums of specified fields
  mean     Compute averages (sample means) of specified fields
  var      Compute sample variance of specified fields
  stddev   Compute sample standard deviation of specified fields
  meaneb   Estimate error bars for averages (assuming no sample autocorrelation)
  skewness Compute sample skewness of specified fields
  kurtosis Compute sample kurtosis of specified fields
  min      Compute minimum values of specified fields
  max      Compute maximum values of specified fields
-f {a,b,c}  Value-field names on which to compute statistics. Requires -o.
-r {a,b,c}  Regular expressions for value-field names on which to compute
            statistics. Requires -o.
-c {a,b,c}  Substrings for collapse mode. All fields which have the same names
            after removing substrings will be accumulated together. Please see
            examples below.
-i          Use interpolated percentiles, like R's type=7; default like type=1.
            Not sensical for string-valued fields.
-o {name}   Output field basename for -f/-r.
-k          Keep the input fields which contributed to the output statistics;
            the default is to omit them.

String-valued data make sense unless arithmetic on them is required,
e.g. for sum, mean, interpolated percentiles, etc. In case of mixed data,
numbers are less than strings.

Example input data: "a_in_x=1,a_out_x=2,b_in_y=4,b_out_x=8".
Example: mlr merge-fields -a sum,count -f a_in_x,a_out_x -o foo
  produces "b_in_y=4,b_out_x=8,foo_sum=3,foo_count=2" since "a_in_x,a_out_x" are
  summed over.
Example: mlr merge-fields -a sum,count -r in_,out_ -o bar
  produces "bar_sum=15,bar_count=4" since all four fields are summed over.
Example: mlr merge-fields -a sum,count -c in_,out_
  produces "a_x_sum=3,a_x_count=2,b_y_sum=4,b_y_count=1,b_x_sum=8,b_x_count=1"
  since "a_in_x" and "a_out_x" both collapse to "a_x", "b_in_y" collapses to
  "b_y", and "b_out_x" collapses to "b_x".

most-frequent

mlr most-frequent --help

Shows the most frequently occurring distinct values for specified field names.
The first entry is the statistical mode; the remaining are runners-up.
Options:
-f {one or more comma-separated field names}. Required flag.
-n {count}. Optional flag defaulting to 10.
-b          Suppress counts; show only field values.
-o {name}   Field name for output count. Default "count".
See also "mlr least-frequent".

nest

mlr nest --help

Explodes specified field values into separate fields/records, or reverses this.
Options:
  --explode,--implode   One is required.
  --values,--pairs      One is required.
  --across-records,--across-fields One is required.
  -f {field name}       Required.
  --nested-fs {string}  Defaults to ";". Field separator for nested values.
  --nested-ps {string}  Defaults to ":". Pair separator for nested key-value pairs.
  --evar {string}       Shorthand for --explode --values ---across-records --nested-fs {string}
  --ivar {string}       Shorthand for --implode --values ---across-records --nested-fs {string}
Please use "mlr --usage-separator-options" for information on specifying separators.

Examples:

  mlr nest --explode --values --across-records -f x
  with input record "x=a;b;c,y=d" produces output records
    "x=a,y=d"
    "x=b,y=d"
    "x=c,y=d"
  Use --implode to do the reverse.

  mlr nest --explode --values --across-fields -f x
  with input record "x=a;b;c,y=d" produces output records
    "x_1=a,x_2=b,x_3=c,y=d"
  Use --implode to do the reverse.

  mlr nest --explode --pairs --across-records -f x
  with input record "x=a:1;b:2;c:3,y=d" produces output records
    "a=1,y=d"
    "b=2,y=d"
    "c=3,y=d"

  mlr nest --explode --pairs --across-fields -f x
  with input record "x=a:1;b:2;c:3,y=d" produces output records
    "a=1,b=2,c=3,y=d"

Notes:
* With --pairs, --implode doesn't make sense since the original field name has
  been lost.
* The combination "--implode --values --across-records" is non-streaming:
  no output records are produced until all input records have been read. In
  particular, this means it won't work in tail -f contexts. But all other flag
  combinations result in streaming (tail -f friendly) data processing.
* It's up to you to ensure that the nested-fs is distinct from your data's IFS:
  e.g. by default the former is semicolon and the latter is comma.
See also mlr reshape.

nothing

mlr nothing --help

Drops all input records. Useful for testing, or after tee/print/etc. have
produced other output.
Options:

put

mlr put --help

Options:
-f {file name} File containing a DSL expression (see examples below). If the filename
   is a directory, all *.mlr files in that directory are loaded.

-e {expression} You can use this after -f to add an expression. Example use
   case: define functions/subroutines in a file you specify with -f, then call
   them with an expression you specify with -e.

(If you mix -e and -f then the expressions are evaluated in the order encountered.
Since the expression pieces are simply concatenated, please be sure to use intervening
semicolons to separate expressions.)

-s name=value: Predefines out-of-stream variable @name to have
    Thus mlr put -s foo=97 '$column += @foo' is like
    mlr put 'begin {@foo = 97} $column += @foo'.
    The value part is subject to type-inferencing.
    May be specified more than once, e.g. -s name1=value1 -s name2=value2.
    Note: the value may be an environment variable, e.g. -s sequence=$SEQUENCE

-x (default false) Prints records for which {expression} evaluates to false, not true,
   i.e. invert the sense of the filter expression.

-q Does not include the modified record in the output stream.
   Useful for when all desired output is in begin and/or end blocks.

-S and -F: There are no-ops in Miller 6 and above, since now type-inferencing is done
   by the record-readers before filter/put is executed. Supported as no-op pass-through
   flags for backward compatibility.


Parser-info options:

-w Print warnings about things like uninitialized variables.

-W Same as -w, but exit the process if there are any warnings.

-p Prints the expressions's AST (abstract syntax tree), which gives full
  transparency on the precedence and associativity rules of Miller's grammar,
  to stdout.

-d Like -p but uses a parenthesized-expression format for the AST.

-D Like -d but with output all on one line.

-E Echo DSL expression before printing parse-tree

-v Same as -E -p.

-X Exit after parsing but before stream-processing. Useful with -v/-d/-D, if you
   only want to look at parser information.

Examples:
  mlr --from example.csv put '$qr = $quantity * $rate'
More example put expressions:
  If-statements:
    'if ($flag == true) { $quantity *= 10}'
    'if ($x > 0.0 { $y=log10($x); $z=sqrt($y) } else {$y = 0.0; $z = 0.0}'
  Newly created fields can be read after being written:
    '$new_field = $index**2; $qn = $quantity * $new_field'
  Regex-replacement:
    '$name = sub($name, "http.*com"i, "")'
  Regex-capture:
    'if ($a =~ "([a-z]+)_([0-9]+)) { $b = "left_\1"; $c = "right_\2" }'
  Built-in variables:
    '$filename = FILENAME'
  Aggregations (use mlr put -q):
    '@sum += $x; end {emit @sum}'
    '@sum[$shape] += $quantity; end {emit @sum, "shape"}'
    '@sum[$shape][$color] += $x; end {emit @sum, "shape", "color"}'
    '
      @min = min(@min,$x);
      @max=max(@max,$x);
      end{emitf @min, @max}
    '

See also https://miller.readthedocs.io/reference-dsl for more context.

regularize

Il verbo regularize riordina le righe nello stesso ordine della prima (qualunque sia l'ordine).

mlr regularize --help

Outputs records sorted lexically ascending by keys.
Options:

remove-empty-columns

mlr remove-empty-columns --help

Omits fields which are empty on every input row. Non-streaming.
Options:

rename

mlr rename --help

Renames specified fields.
Options:
-r         Treat old field  names as regular expressions. "ab", "a.*b"
           will match any field name containing the substring "ab" or
           matching "a.*b", respectively; anchors of the form "^ab$",
           "^a.*b$" may be used. New field names may be plain strings,
           or may contain capture groups of the form "\1" through
           "\9". Wrapping the regex in double quotes is optional, but
           is required if you wish to follow it with 'i' to indicate
           case-insensitivity.
-g         Do global replacement within each field name rather than
           first-match replacement.
Examples:
mlr rename old_name,new_name'
mlr rename old_name_1,new_name_1,old_name_2,new_name_2'
mlr rename -r 'Date_[0-9]+,Date,'  Rename all such fields to be "Date"
mlr rename -r '"Date_[0-9]+",Date' Same
mlr rename -r 'Date_([0-9]+).*,\1' Rename all such fields to be of the form 20151015
mlr rename -r '"name"i,Name'       Rename "name", "Name", "NAME", etc. to "Name"

reorder

mlr reorder --help

Moves specified names to start of record, or end of record.
Options:
-e Put specified field names at record end: default is to put them at record start.
-f {a,b,c} Field names to reorder.
-b {x}     Put field names specified with -f before field name specified by {x},
           if any. If {x} isn't present in a given record, the specified fields
           will not be moved.
-a {x}     Put field names specified with -f after field name specified by {x},
           if any. If {x} isn't present in a given record, the specified fields
           will not be moved.

Examples:
mlr reorder    -f a,b sends input record "d=4,b=2,a=1,c=3" to "a=1,b=2,d=4,c=3".
mlr reorder -e -f a,b sends input record "d=4,b=2,a=1,c=3" to "d=4,c=3,a=1,b=2".

repeat

mlr repeat --help

Copies input records to output records multiple times.
Options must be exactly one of the following:
-n {repeat count}  Repeat each input record this many times.
-f {field name}    Same, but take the repeat count from the specified
                   field name of each input record.
Example:
  echo x=0 | mlr repeat -n 4 then put '$x=urand()'
produces:
 x=0.488189
 x=0.484973
 x=0.704983
 x=0.147311
Example:
  echo a=1,b=2,c=3 | mlr repeat -f b
produces:
  a=1,b=2,c=3
  a=1,b=2,c=3
Example:
  echo a=1,b=2,c=3 | mlr repeat -f c
produces:
  a=1,b=2,c=3
  a=1,b=2,c=3
  a=1,b=2,c=3

reshape

Trasforma lo schema da wide a long e viceversa. Vedi approfondimento.

mlr reshape --help

Wide-to-long options:
-i {input field names}   -o {key-field name,value-field name}
-r {input field regexes} -o {key-field name,value-field name}
These pivot/reshape the input data such that the input fields are removed
and separate records are emitted for each key/value pair.
Note: this works with tail -f and produces output records for each input
record seen.
Long-to-wide options:
-s {key-field name,value-field name}
These pivot/reshape the input data to undo the wide-to-long operation.
Note: this does not work with tail -f; it produces output records only after
all input records have been read.

Ad esempio da wide

Studente Scuola Matematica Italiano
Andy Liceo Cannizzaro 7 6
Lisa Liceo Garibaldi 6 7
Giovanna Liceo Garibaldi 7 7

a long

Studente Scuola materia voto
Andy Liceo Cannizzaro Matematica 7
Andy Liceo Cannizzaro Italiano 6
Lisa Liceo Garibaldi Matematica 6
Lisa Liceo Garibaldi Italiano 7
Giovanna Liceo Garibaldi Matematica 7
Giovanna Liceo Garibaldi Italiano 7

sample

mlr sample --help

Reservoir sampling (subsampling without replacement), optionally by category.
See also mlr bootstrap and mlr shuffle.
Options:
-g {a,b,c} Optional: group-by-field names for samples, e.g. a,b,c.
-k {k} Required: number of records to output in total, or by group if using -g.

sec2gmtdate

mlr sec2gmtdate --help

Replaces a numeric field representing seconds since the epoch with the
corresponding GMT year-month-day timestamp; leaves non-numbers as-is.
This is nothing more than a keystroke-saver for the sec2gmtdate function:
  ../c/mlr sec2gmtdate time1,time2
is the same as
  ../c/mlr put '$time1=sec2gmtdate($time1);$time2=sec2gmtdate($time2)'

sec2gmt

mlr sec2gmt --help

Replaces a numeric field representing seconds since the epoch with the
corresponding GMT timestamp; leaves non-numbers as-is. This is nothing
more than a keystroke-saver for the sec2gmt function:
  mlr sec2gmt time1,time2
is the same as
  mlr put '$time1 = sec2gmt($time1); $time2 = sec2gmt($time2)'
Options:
-1 through -9: format the seconds using 1..9 decimal places, respectively.
--millis Input numbers are treated as milliseconds since the epoch.
--micros Input numbers are treated as microseconds since the epoch.
--nanos  Input numbers are treated as nanoseconds since the epoch.

seqgen

mlr seqgen --help

Passes input records directly to output. Most useful for format conversion.
Produces a sequence of counters.  Discards the input record stream. Produces
output as specified by the options

Options:
-f {name} (default "i") Field name for counters.
--start {value} (default 1) Inclusive start value.
--step {value} (default 1) Step value.
--stop {value} (default 100) Inclusive stop value.
Start, stop, and/or step may be floating-point. Output is integer if start,
stop, and step are all integers. Step may be negative. It may not be zero
unless start == stop.

shuffle

mlr shuffle --help

Outputs records randomly permuted. No output records are produced until
all input records are read. See also mlr bootstrap and mlr sample.
Options:

skip-trivial-records

mlr skip-trivial-records --help

Passes through all records except those with zero fields,
or those for which all fields have empty value.
Options:

sort

mlr sort --help

Sorts records primarily by the first specified field, secondarily by the second
field, and so on.  (Any records not having all specified sort keys will appear
at the end of the output, in the order they were encountered, regardless of the
specified sort order.) The sort is stable: records that compare equal will sort
in the order they were encountered in the input record stream.

Options:
-f  {comma-separated field names}  Lexical ascending
-r  {comma-separated field names}  Lexical descending
-c  {comma-separated field names}  Case-folded lexical ascending
-cr {comma-separated field names}  Case-folded lexical descending
-n  {comma-separated field names}  Numerical ascending; nulls sort last
-nf {comma-separated field names}  Same as -n
-nr {comma-separated field names}  Numerical descending; nulls sort first
-t  {comma-separated field names}  Natural ascending
-tr {comma-separated field names}  Natural descending
-h|--help Show this message.

Example:
  mlr sort -f a,b -nr x,y,z
which is the same as:
  mlr sort -f a -f b -nr x -nr y -nr z

sort-within-records

Riordina i campi in ordine lessicamente crescente per nome campo.

mlr sort-within-records --help

Outputs records sorted lexically ascending by keys.
Options:
-r        Recursively sort subobjects/submaps, e.g. for JSON input.

Ad esempio a questo file, in cui i campi hanno ordine diverso

eterogeneita_irregular.json
{ "a": 1, "b": 2, "c": 3 }
{ "c": 6, "a": 4, "b": 5 }
{ "b": 8, "c": 9, "a": 7 }

si potrà applicare questo comando per ordinare i campi secondo l'ordine alfabetico dei loro nomi

mlr --json sort-within-records ./eterogeneita_irregular.json

{ "a": 1, "b": 2, "c": 3 }
{ "a": 4, "b": 5, "c": 6 }
{ "a": 7, "b": 8, "c": 9 }

stats1

mlr stats1 --help

Computes univariate statistics for one or more given fields, accumulated across
the input record stream.
Options:
-a {sum,count,...} Names of accumulators: one or more of:
  median   This is the same as p50
  p10 p25.2 p50 p98 p100 etc.
  count    Count instances of fields
  mode     Find most-frequently-occurring values for fields; first-found wins tie
  antimode Find least-frequently-occurring values for fields; first-found wins tie
  sum      Compute sums of specified fields
  mean     Compute averages (sample means) of specified fields
  var      Compute sample variance of specified fields
  stddev   Compute sample standard deviation of specified fields
  meaneb   Estimate error bars for averages (assuming no sample autocorrelation)
  skewness Compute sample skewness of specified fields
  kurtosis Compute sample kurtosis of specified fields
  min      Compute minimum values of specified fields
  max      Compute maximum values of specified fields

-f {a,b,c}     Value-field names on which to compute statistics
--fr {regex}   Regex for value-field names on which to compute statistics
               (compute statistics on values in all field names matching regex
--fx {regex}   Inverted regex for value-field names on which to compute statistics
               (compute statistics on values in all field names not matching regex)

-g {d,e,f}     Optional group-by-field names
--gr {regex}   Regex for optional group-by-field names
               (group by values in field names matching regex)
--gx {regex}   Inverted regex for optional group-by-field names
               (group by values in field names not matching regex)

--grfx {regex} Shorthand for --gr {regex} --fx {that same regex}

-i             Use interpolated percentiles, like R's type=7; default like type=1.
               Not sensical for string-valued fields.\n");
-s             Print iterative stats. Useful in tail -f contexts (in which
               case please avoid pprint-format output since end of input
               stream will never be seen).
Example: mlr stats1 -a min,p10,p50,p90,max -f value -g size,shape
Example: mlr stats1 -a count,mode -f size
Example: mlr stats1 -a count,mode -f size -g shape
Example: mlr stats1 -a count,mode --fr '^[a-h].*$' -gr '^k.*$'
        This computes count and mode statistics on all field names beginning
         with a through h, grouped by all field names starting with k.

Notes:
* p50 and median are synonymous.
* min and max output the same results as p0 and p100, respectively, but use
  less memory.
* String-valued data make sense unless arithmetic on them is required,
  e.g. for sum, mean, interpolated percentiles, etc. In case of mixed data,
  numbers are less than strings.
* count and mode allow text input; the rest require numeric input.
  In particular, 1 and 1.0 are distinct text for count and mode.
* When there are mode ties, the first-encountered datum wins.

stats2

mlr stats2 --help

Computes bivariate statistics for one or more given field-name pairs,
accumulated across the input record stream.
-a {linreg-ols,corr,...}  Names of accumulators: one or more of:
  linreg-ols Linear regression using ordinary least squares
  linreg-pca Linear regression using principal component analysis
  r2       Quality metric for linreg-ols (linreg-pca emits its own)
  logireg  Logistic regression
  corr     Sample correlation
  cov      Sample covariance
  covx     Sample-covariance matrix
-f {a,b,c,d}   Value-field name-pairs on which to compute statistics.
               There must be an even number of names.
-g {e,f,g}     Optional group-by-field names.
-v             Print additional output for linreg-pca.
-s             Print iterative stats. Useful in tail -f contexts (in which
               case please avoid pprint-format output since end of input
               stream will never be seen).
--fit          Rather than printing regression parameters, applies them to
               the input data to compute new fit fields. All input records are
               held in memory until end of input stream. Has effect only for
               linreg-ols, linreg-pca, and logireg.
Only one of -s or --fit may be used.
Example: mlr stats2 -a linreg-pca -f x,y
Example: mlr stats2 -a linreg-ols,r2 -f x,y -g size,shape
Example: mlr stats2 -a corr -f x,y

step

mlr step --help

Computes values dependent on the previous record, optionally grouped by category.
Options:
-a {delta,rsum,...}   Names of steppers: comma-separated, one or more of:
  delta    Compute differences in field(s) between successive records
  shift    Include value(s) in field(s) from previous record, if any
  from-first Compute differences in field(s) from first record
  ratio    Compute ratios in field(s) between successive records
  rsum     Compute running sums of field(s) between successive records
  counter  Count instances of field(s) between successive records
  ewma     Exponentially weighted moving average over successive records

-f {a,b,c} Value-field names on which to compute statistics
-g {d,e,f} Optional group-by-field names
-F         Computes integerable things (e.g. counter) in floating point.
           As of Miller 6 this happens automatically, but the flag is accepted
           as a no-op for backward compatibility with Miller 5 and below.
-d {x,y,z} Weights for ewma. 1 means current sample gets all weight (no
           smoothing), near under under 1 is light smoothing, near over 0 is
           heavy smoothing. Multiple weights may be specified, e.g.
           "mlr step -a ewma -f sys_load -d 0.01,0.1,0.9". Default if omitted
           is "-d 0.5".
-o {a,b,c} Custom suffixes for EWMA output fields. If omitted, these default to
           the -d values. If supplied, the number of -o values must be the same
           as the number of -d values.

Examples:
  mlr step -a rsum -f request_size
  mlr step -a delta -f request_size -g hostname
  mlr step -a ewma -d 0.1,0.9 -f x,y
  mlr step -a ewma -d 0.1,0.9 -o smooth,rough -f x,y
  mlr step -a ewma -d 0.1,0.9 -o smooth,rough -f x,y -g group_name

Please see https://miller.readthedocs.io/en/latest/reference-verbs.html#filter or
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
for more information on EWMA.

tac

mlr tac --help

Prints records in reverse order from the order in which they were encountered.
Options:

tail

mlr tail --help

Passes through the last n records, optionally by category.
Options:
-g {a,b,c} Optional group-by-field names for head counts, e.g. a,b,c.
-n {n} Head-count to print. Default 10.

tee

mlr tee --help

Options:
-a    Append to existing file, if any, rather than overwriting.
-p    Treat filename as a pipe-to command.
Any of the output-format command-line flags (see mlr -h). Example: using
  mlr --icsv --opprint put '...' then tee --ojson ./mytap.dat then stats1 ...
the input is CSV, the output is pretty-print tabular, but the tee-file output
is written in JSON format.

template

mlr template --help

Places input-record fields in the order specified by list of column names.
If the input record is missing a specified field, it will be filled with the fill-with.
If the input record possesses an unspecified field, it will be discarded.
Options:
 -f {a,b,c} Comma-separated field names for template, e.g. a,b,c.
 -t {filename} CSV file whose header line will be used for template.
--fill-with {filler string}  What to fill absent fields with. Defaults to the empty string.
Example:
* Specified fields are a,b,c.
* Input record is c=3,a=1,f=6.
* Output record is a=1,b=,c=3.

top

Restituisce i record con i valori più grandi (o più piccoli), per uno o più campi, anche raggruppando per campi.

mlr top --help

-f {a,b,c}    Value-field names for top counts.
-g {d,e,f}    Optional group-by-field names for top counts.
-n {count}    How many records to print per category; default 1.
-a            Print all fields for top-value records; default is
              to print only value and group-by fields. Requires a single
              value-field name only.
--min         Print top smallest values; default is top largest values.
-F            Keep top values as floats even if they look like integers.
-o {name}     Field name for output indices. Default "top_idx".
Prints the n records with smallest/largest values at specified fields,
optionally by category.

Qui un file (senza intestazione, nel comando di sotto si usa infatti il flag -N), in cui i primi 4 campi sono a volte duplicati in più record.

input.csv
1,861265,C,A,0.071
1,861265,C,A,0.148
1,861265,C,G,0.001
1,861265,C,G,0.108
1,861265,C,T,0
1,861265,C,T,0.216
2,193456,G,A,0.006
2,193456,G,A,0.094
2,193456,G,C,0.011
2,193456,G,C,0.152
2,193456,G,T,0.003
2,193456,G,T,0.056

Se se si vogliono estrarre le righe con il valore massimo del campo 5, a parità di valori dei campi 1,2,3,4, il comando sarà:

mlr --csv -N top -f 5 -g 1,2,3,4 input.tsv

1,861265,C,A,1,0.148
1,861265,C,G,1,0.108
1,861265,C,T,1,0.216
2,193456,G,A,1,0.094
2,193456,G,C,1,0.152
2,193456,G,T,1,0.056

In output soltanto i campi definiti nel comando. Se si vogliono tutti, bisogna aggiungere -a

unflatten

mlr unflatten --help

Reverses flatten. Example: field with name 'a.b.c' and value 4
becomes name 'a' and value '{"b": { "c": 4 }}'.
Options:
-f {a,b,c} Comma-separated list of field names to unflatten (default all).
-s {string} Separator, defaulting to mlr --flatsep value.

uniq

mlr uniq --help

Prints distinct values for specified field names. With -c, same as
count-distinct. For uniq, -f is a synonym for -g.

Options:
-g {d,e,f}    Group-by-field names for uniq counts.
-c            Show repeat counts in addition to unique values.
-n            Show only the number of distinct values.
-o {name}     Field name for output count. Default "count".
-a            Output each unique record only once. Incompatible with -g.
              With -c, produces unique records, with repeat counts for each.
              With -n, produces only one record which is the unique-record count.
              With neither -c nor -n, produces unique records.

unsparsify

mlr unsparsify --help

Usage: mlr unsparsify [options]
Prints records with the union of field names over all input records.
For field names absent in a given record but present in others, fills in
a value. This verb retains all input before producing any output.
Options:
--fill-with {filler string}  What to fill absent fields with. Defaults to
                            the empty string.
-f {a,b,c} Specify field names to be operated on. Any other fields won't be
          modified, and operation will be streaming.
-h|--help  Show this message.
Example: if the input is two records, one being 'a=1,b=2' and the other
being 'b=3,c=4', then the output is the two records 'a=1,b=2,c=' and
'a=,b=3,c=4'.

Alcuni formati, come il JSON, non devono avere lo stesso numero di campi per record. Un esempio il file a seguire:

input.json
[
  {
    "nome": "sara",
    "dataNascita": "2000-02-22",
    "altezza": 166,
    "peso": 70.4,
    "comuneNascita": "Roma"
  },
  {
    "nome": "giulia",
    "comuneNascita": "Milano"
  }
]

Con unsparsify, viene di default prodotto un output in cui tutti i record hanno gli stessi campi, e l'input viene fatto diventare rettangolare (vedi eterogeneità dei record); laddove erano assenti viene assegnato un valore nullo.

mlr --json unsparsify input.json

[
  {
    "nome": "sara",
    "dataNascita": "2000-02-22",
    "altezza": 166,
    "peso": 70.4,
    "comuneNascita": "Roma"
  },
  {
    "nome": "giulia",
    "dataNascita": "",
    "altezza": "",
    "peso": "",
    "comuneNascita": "Milano"
  }
]